
A Python Toolkit for Universal Transliteration

Abstract

We describe ScriptTranscriber, an
open source toolkit for extracting
transliterations in comparable corpora
from languages written in different
scripts. The system includes various
methods for extracting potential terms
of interest from raw text, for provid-
ing guesses on the pronunciations of
terms, and for comparing two strings
as possible transliterations using both
phonetic and temporal measures. The
system works with any script in the
Unicode Basic Multilingual Plane and
is easily extended to include new mod-
ules. ScriptTranscriber will be avail-
able for download from http://www.
anonymized-for-submission.

1 Introduction

This paper reports on a toolkit for per-
forming transliteration between scripts called
ScriptTranscriber. ScriptTranscriber in-
cludes modules for producing guesses at pro-
nunciations for any word in any script in the
Unicode Basic Multilingual Plane; for com-
puting edit distances between strings using
a variety of measures including phonetic dis-
tance; for computing time correlations be-
tween terms in comparable corpora; and pro-
viding a set of prepackaged recipes for mining
possible transliteration pairs from comparable
corpora. ScriptTranscriber is useful in two
major ways:

1. Given comparable corpora, such as
newswire text, in a pair of languages that
use different scripts, ScriptTranscriber
provides an easy way to mine translitera-
tions from the comparable texts. This is

particularly useful for underresourced lan-
guages, where training data for transliter-
ation may be lacking, and where it is thus
hard to train good transliterators.

2. ScriptTranscriber provides an open
source package that allows for ready in-
corporation of more sophisticated mod-
ules — e.g. a trained transliteration
model for a particular language pair.

ScriptTranscriber consists of approxi-
mately 7,500 lines of object-oriented Python.
Some of the modules require PySNoW, the
Python interface to the SNoW machine-
learning package (Carlson et al., 1999) avail-
able from the Cognitive Computation Group
at the University of Illinois at Urbana-
Champaign.1

ScriptTranscriber will be avail-
able for download from http://www.
anonymized-for-submission.2

2 Modules and classes

The modules and classes of
ScriptTranscriber are as follows.

First there is the XML document struc-
ture module, an example of which is shown in
Figure 1. The top-level XML representation
consists of a set of tupled documents, ordered
according to some reasonable criterion such as
time. Each doc element consists of one or more
lang elements, which represent the original
document(s) in the named language. Within
each lang are a set of tokens, in no partic-
ular order, which represent terms—typically
names—that have been extracted during the
term extraction phase described below, along

1PySNoW must be downloaded separately from
http://l2r.cs.uiuc.edu/~cogcomp/.

2We also hope to release ScriptTranscriber as
part of NLTK (Loper and Bird, 2002).

Figure 1: Sample comparable texts and extracted XML document structure (including just the extracted names)
for ScriptTranscriber.

with a set of possible pronunciations and their
counts. Within each doc, the lang elements
are intended to consist of terms derived from
comparable or parallel texts. For example, in
Figure 1 the English document is assumed to
be comparable to the Chinese document.

The term extractor class extracts inter-
esting terms from raw text, i.e. terms that are
likely to be transliterated across scripts. We
provide five specializations of this:

• A simple capitalization-based extractor
that looks for sentence medial capitalized
terms if the script supports capitalization;
otherwise just returns all terms.

• A Chinese foreign name extractor. This
extractor uses a list of characters that
are commonly used to transliterate for-
eign words in Chinese, and extracts se-
quences of at least three such characters.

• A Chinese personal name extractor. This
uses a list of family names to find possible
Chinese personal names.

• A katakana extractor, that extracts re-
gions of katakana from Japanese text;
katakana is commonly used to transliter-
ate foreign terms in Japanese.

• A Thai extractor. This uses a discrimina-
tive model (built using SNoW) to predict
word boundaries in unsegmented Thai
text, and then returns all found terms.

Users can easily define their own extractors so
that, for example, if they have a good named
entity extractor for a language, they can sim-
ply define an interface to that as a derived class
of Extractor.

We also provide a morphological ana-
lyzer class, a placeholder for a range of possi-
ble morphological analyzers. The one provided
looks for words that share common substrings
and groups them into tentative morphological
equivalence classes, along the lines of (Klemen-
tiev and Roth, 2006).

The pronouncer module provides a num-
ber of classes to convert Unicode strings into
phonetic strings; the current version of the
software uses WorldBet (Hieronymus, 1993),
an ASCII implementation of the International
Phonetic Alphabet (IPA). There are three spe-
cializations of the pronouncer module pro-
vided:

• Unitran (Yoon et al., 2007), which pro-
vides guesses on pronunciations for most

grapheme code points in the Unicode Ba-
sic Multilingual Plane that are also used
as scripts for languages. (For example,
the IPA code points are not covered, since
IPA is not used as the standard orthogra-
phy for any language.) So, for example,
Korean hangul 마 is given pronunciation
ma, Cyrillic Ж is given pronunciation Z,
and Japanese katakana マ is given pro-
nunciation mA.

• English pronouncer: provides Festival-
derived pronunciations (Taylor et al.,
1998) for about 2.9 million words.

• Hanzi (Chinese character) pronouncer.
Provides Chinese (Mandarin) and Native
Japanese (kunyomi) pronunciations for
characters. In some cases, there may be
more than one Mandarin or kunyomi pro-
nunciation for a given character. In such
cases, the current implementation picks
one pronunciation (i.e. one Chinese pro-
nunciation and one kunyomi pronuncia-
tion, if there is a kunyomi pronuncia-
tion). In most cases the variant pronun-
ciations are minor variants so that the
choice of one pronunciation will not affect
the phonetic comparison, and comparing
one string is more efficient than compar-
ing a lattice of possible transcriptions.
The kunyomi module also computes ren-
daku so that for example 梅干 is pro-
nounced as umebosu rather than umehosu.

The comparator module provides the cost
for the mapping between strings. Three spe-
cializations are provided:

• Hand-built phonetic comparator, which
uses the phonetic distance method of (Tao
et al., 2006; Yoon et al., 2007).

• Perceptron-based comparator. This
uses a perceptron string-to-string
transliteration model trained on a
dictionary of transliteration pairs, fol-
lowing (Klementiev and Roth, 2006).
The particular model provided with
ScriptTranscriber is based on a 71,548
entry English/Chinese name lexicon
from the Linguistic Data Consortium
(http://www.ldc.upenn.edu), but the
implementation (which uses PySNoW

(Carlson et al., 1999)) is of course
language-pair independent.

• Time correlation comparator. For each
doc, and for each lang in the doc, we pair
each extracted term with the extracted
terms in all the other langs in the doc.
Those pairs for which the phonetic match
score is below some threshold can be re-
moved at this stage. We compute similar
pairs for each of the docs in the corpus.
Then for each pair, we compute the term-
relative frequencies across the entire cor-
pus and, following (Sproat et al., 2006),
we compute the Pearson correlation co-
efficient of these relative frequency values.

3 Sample Use

A sample use of the program is given in Fig-
ure 2. This program loads some Thai and En-
glish data from the distributed testdata di-
rectory, extract terms from each, builds and
dumps an XML document representation, and
computes phonetic distances for each pair of
terms in each document, dumping a best-first
sorted list of matches to a file.

Figure 3 shows a sample interactive use of
the tools. Here we compute the phonetic
distance between the same (nonsense) word
lalagua transcribed in Chinese and in Chero-
kee.

4 Summary

This short paper described
ScriptTranscriber an open source Python
toolkit for extracting transliteration pairs
from comparable corpora in languages
that use different scripts. It works with
any script in the Unicode Basic Multilin-
gual Plane. The object-oriented design of
ScriptTranscriber means that it is easy
to extend to incorporate other more so-
phisticated models. ScriptTranscriber
will be available for download from
http://www.anonymized-for-submission.

References

Andrew Carlson, Chad Cumby, Je L. Rosen, and
Dan Roth. 1999. The SNoW learning architec-
ture. Technical Report UIUCDCS-R-99-2101,
UIUC CS Dept.

#!/bin/env python

-*- coding: utf-8 -*-

"""Sample transliteration extractor based on the LCTL Thai parallel

data. Also tests Thai prons and alignment.

"""

__author__ = """

xxx@yyyy.zzz (Xxxxx Yyyyyyy)

"""

import sys

import os

import documents

import tokens

import token_comp

import extractor

import thai_extractor

import pronouncer

from __init__ import BASE_

A sample of 10,000 from each:

ENGLISH_ = ’%s/testdata/thai_test_eng.txt’ % BASE_

THAI_ = ’%s/testdata/thai_test_thai.txt’ % BASE_

XML_FILE_ = ’%s/testdata/thai_test.xml’ % BASE_

MATCH_FILE_ = ’%s/testdata/thai_test.matches’ % BASE_

BAD_COST_ = 6.0

def LoadData():

t_extr = thai_extractor.ThaiExtractor()

e_extr = extractor.NameExtractor()

doclist = documents.Doclist()

doc = documents.Doc()

doclist.AddDoc(doc)

Thai

lang = tokens.Lang()

lang.SetId(’th’)

doc.AddLang(lang)

t_extr.FileExtract(THAI_)

lang.SetTokens(t_extr.Tokens())

lang.CompactTokens()

for t in lang.Tokens():

pronouncer_ = pronouncer.UnitranPronouncer(t)

pronouncer_.Pronounce()

English

lang = tokens.Lang()

lang.SetId(’en’)

doc.AddLang(lang)

e_extr.FileExtract(ENGLISH_)

lang.SetTokens(e_extr.Tokens())

lang.CompactTokens()

for t in lang.Tokens():

pronouncer_ = pronouncer.EnglishPronouncer(t)

pronouncer_.Pronounce()

return doclist

def ComputePhoneMatches(doclist):

matches = {}

for doc in doclist.Docs():

lang1 = doc.Langs()[0]

lang2 = doc.Langs()[1]

for t1 in lang1.Tokens():

hash1 = t1.EncodeForHash()

for t2 in lang2.Tokens():

hash2 = t2.EncodeForHash()

try: result = matches[(hash1, hash2)] ## don’t re-calc

except KeyError:

comparator = token_comp.OldPhoneticDistanceComparator(t1, t2)

comparator.ComputeDistance()

result = comparator.ComparisonResult()

matches[(hash1, hash2)] = result

values = matches.values()

values.sort(lambda x, y: cmp(x.Cost(), y.Cost()))

p = open(MATCH_FILE_, ’w’) ## zero out the file

p.close()

for v in values:

if v.Cost() > BAD_COST_: break

v.Print(MATCH_FILE_, ’a’)

if __name__ == ’__main__’:

doclist = LoadData()

doclist.XmlDump(XML_FILE_, utf8 = True)

ComputePhoneMatches(doclist)

Figure 2: Sample use of ScriptTranscriber. This
program computes matches between English and Thai
given a sample comparable English-Thai corpus.

Figure 3: Interactive use of the ScriptTranscriber
tools. (Note that ’>>>’ is the standard Python
prompt. System responses are indented to the left mar-
gin. The two script examples are Cherokee and Hanzi.)
The Hanzi pronouncer produces one Chinese and one
Native Japanese pronunciation guess for the string. It
is the Chinese one — lalakwa — that will match with
the Cherokee example.

Jim Hieronymus. 1993. Ascii phonetic symbols for
the world’s languages: Worldbet.

Alexandre Klementiev and Dan Roth. 2006.
Weakly supervised named entity transliteration
and discovery from multilingual comparable cor-
pora. In Proceedings of COLING-ACL 2006,
Sydney, Australia, July.

Edward Loper and Steven Bird. 2002. Nltk:
the natural language toolkit. In Proceedings
of the ACL-02 Workshop on Effective tools and
methodologies for teaching natural language pro-
cessing and computational linguistics, pages 63–
70.

Richard Sproat, Tao Tao, and ChengXiang Zhai.
2006. Named entity transliteration with compa-
rable corpora. In Proceedings of COLING-ACL
2006, Sydney, July.

Tao Tao, Su-Youn Yoon, Andrew Fister, Richard
Sproat, and ChengXiang Zhai. 2006. Unsuper-
vised named entity transliteration using tempo-
ral and phonetic correlation. In EMNLP 2006,
Sydney, July.

Paul Taylor, Alan Black, and Richard Caley. 1998.
The architecture of the Festival speech synthe-
sis system. In Proceedings of the Third ESCA
Workshop on Speech Synthesis, pages 147–151,
Jenolan Caves, Australia.

Su-youn Yoon, Kyoung-young Kim, and Richard
Sproat. 2007. Multilingual transliteration using
feature based phonetic method. In ACL.

