
Lightly Supervised Learning of Text Normalization:
Russian Number Names

Abstract

Most areas of natural language pro-
cessing today make heavy use of au-
tomatic inference from large corpora.
One exception is text-normalization for
such applications as text-to-speech syn-
thesis, where it is still the norm to
build grammars by hand for such tasks
as handling abbreviations or the ex-
pansion of digit sequences into number
names. One reason for this, apart from
the general lack of interest in text nor-
malization, has been the lack of anno-
tated data. For many languages, how-
ever, there is abundant unannotated
data that can be brought to bear on
these problems. This paper reports
on the inference of number-name ex-
pansion in Russian, a particularly diffi-
cult language due to its complex inflec-
tional system. A database of several
million spelled-out number names was
collected from the web and mapped
to digit strings using an overgenerat-
ing number-name grammar. The same
overgenerating number-name grammar
can be used to produce candidate ex-
pansions into number names, which are
then scored using a language model
trained on the web data. Our re-
sults suggest that it is possible to in-
fer expansion modules for very complex
number name systems, from unanno-
tated data, and using a minimum of
hand-compiled seed data.

1 Introduction

This paper deals with an understudied area in
NLP, namely text normalization, in particular
for such applications as text-to-speech synthe-

sis or automatic speech recognition. Partly be-
cause the area is understudied, it is one of the
few areas where complex hand-built systems
still play a major role. While some work has
been done on applying data driven approaches
to such problems as abbreviation expansion
(Sproat et al., 2001; Olinsky and Black, 2000),
many problems, including seemingly mundane
things like the expansion of digit-strings into
number names, still rely on hand-engineered
grammars.

For number-name expansion in particular,
part of the reason for this is that on the one
hand, it is relatively easy (for some languages)
to write a piece of code (or build a finite-state
transducer) that maps from sequences such as
2,423 into number names such as two thou-
sand four hundred and twenty three; whereas
on the other hand it is hard to find enough
training data that pairs digit strings with their
number-name expansion. But how about in-
ducing number name expansion from unanno-
tated text?

Here we report on some experiments on ad-
dressing this problem for Russian, a language
with a particularly complex number-name sys-
tem. Designing a model to expand a digit
string into a well-formed number name in Rus-
sian is significantly more complicated than the
comparable problem for English, due to the
complex case and gender system of Russian.
Furthermore, choosing the appropriate expan-
sion depends upon context.

In this paper we will present a simple proce-
dure for mining Russian number names from
the Web, and learning the mapping between
digit strings and number names. We will com-
pare both generative (n-gram) language mod-
els and two discriminative methods and show,
that at least for the methods tried, the n-gram
language model yields the best performance.



Furthermore, we will show that nearly all of
the errors in the learned system relate to prob-
lems with selecting the right contextual expan-
sion, which is expected to be difficult; and that
very few errors are due to number names that
are internally ill-formed. Since it is precisely
the internal well-formedness that is easiest to
capture with a set of hand-constructed rules,
this result suggests that such rules may be dis-
pensible, and that the internal well-formedness
of a number name should be handled by a lan-
guage model that also selects the contextually
most appropriate form.

2 Russian Numbers

Russian (along with other highly inflected
Slavic languages such as Czech, or Croat-
ian) has what is probably the most com-
plex number name system of any language.
The complexity is due to the case, num-
ber and gender marking on nouns and ad-
jectives, which also carries over to the num-
ber system. Russian distinguishes two num-
bers (singular, plural), three genders (mascu-
line, feminine, neuter) and six cases (nomi-
native, accusative, genitive, dative, preposi-
tional and instrumental). In general, num-
bers agree in gender with the nouns they
modify. Thus один город one city has one
in the masculine nominative/accusative, but
одна собака one dog, has one in the femi-
nine, following the gender of the nouns. Sim-
ilarly for два города two cities, versus две
собаки two dogs. In an oblique case, such
as the instrumental, the numeral must agree
with the noun in case: в двух шагах at two
paces. Complex numerals decline in their en-
tirety: к тремстам тридцати шести часам
to three hundred and thirty six hours (da-
tive case); с пятью тысячами пятьюстами
семьюдесятью четырьмя рублями with five
thousand five hundred and seventy four rubles
(instrumental case). This short description
only begins to scratch the surface of the com-
plexity: the reader is referred to any good ped-
agogical grammar of Russian, such as (Wade,
1992) for details.

To get a sense of the range of forms one
finds for a single number in written text, con-
sider Table 1, which are various contextually
appropriate renditions of two, three thousand
and twenty, culled from Russian web pages.

3 Methodology

The basic method outlined here can be sum-
marized in the following steps:

• Provide a seed-list L of all legal forms of
single-word number terms.

• Mine web pages for sequences of terms
from L, along with their contexts.

• Using a loose number-name grammar, fil-
ter the resulting list for combinations that
fit the general properties expected of well-
formed number names; the grammar is
implemented as a finite-state transducer,
which will accept only reasonable-looking
number names, and map them to their
corresponding digit sequences.

• The result of the previous step is a large
list of annotated digit-string/number-
name pairs in context. We now use these
data to train a model that will produce
a contextually appropriate number name
expansion given a digit string.

In what follows we detail each of these steps.

3.1 Providing the seed list

The first step is to provide a seed list of
basic number terms in all of their inflected
forms. Number forms for the words for
1, 10, 50, 100 and 500 for Russian would
look as in Table 2. In the case of 1,
the forms reflect differences in gender, case
and number; for the other numbers listed
here, the only marked differences are for
case. For, example, пятьдесять is the Nom-
inative/Accusative case form, пятидесяти is
the Genitive/Dative/Prepositional form, and
пятьюдесятью is the Instrumental form.

Ideally such lists of forms could be mined
from web pages that deal with Russian gram-
mar, but this is likely to be difficult to achieve
because grammatical descriptions of languages
as complex as Russian rarely simply list all the
forms, and instead depend upon the reader to
construct the complete set from information
given elsewhere in the grammar. A fairly typi-
cal example from a good pedagogical grammar
of Russian is the following. So, Wade (1992,
p. 197) notes that “тысяча ‘thousand’ declines
like second-declension дача ‘country cottage’



Left Context Number Right Context
наступающие через день два в случае когда

явное предпочтение отдаётся двум последним это единственные
бухаре кроме того две новые гостиницы планируется

уровень на базе двух резервируемых станций арм
и получал около трех тысяч рублей в месяц
уже как минимум три тысячи лет поэтому установить

асбест применяется в трех тысячах наименований материалов и
авиабилеты потребовались сразу трем тысячам людей участники несостоявшегося

поп культуры в двадцать пять он начал печататься
прибли зительно о двадцати пяти пророках и посланниках

ограничить портфель госхолдинга двадцатью пятью крупными компаниями что

Table 1: Contextually appropriate renditions of 2, 3,000 and 20, from Russian web pages.
(Unfortunately lack of space does not allow for glosses.)

”, so in order to find all the forms of тысяча
one would have to consult a table that lists
all the forms of second-declension nouns like
дача. Even if resources as good as a tradi-
tional grammar such as Wade’s could be found
on the web, it is doubtful that one could per-
form the correct inference to produce all and
only the correct forms of тысяча. Thus, in-
stead, a list consisting of 187 entries for forms
of single-word number names ranging in value
between 1 and 1012 was constructed by hand.

1 один 10 десять
1 одного 10 десяти
1 одному 10 десятью
1 одним 50 пятьдесять
1 одном 50 пятидесяти
1 одна 50 пятьюдесятью
1 одну 100 сот
1 одной 100 ста
1 одною 500 пятьсот
1 одно 500 пятисот
1 одни 500 пятистам
1 одних 500 пятьюстами
1 одними 500 пятистах

Table 2: Sample seed items.

3.2 Mining web pages

We collected all instances of sequences of one
or more words from the number name list on
all Russian-language pages from a snapshot of
the Web. Also collected was a window of three
tokens on either side of the number name.

3.3 The number-name grammar and
filtering

While languages show a lot of variation in
their expression of numbers, there are cer-
tainly constraints on what is not possible,
or at least very unlikely. The most exten-

sive study of linguistic constraints on number-
name formation is (Hurford, 1975) (but see
also (Brandt Corstius, 1968) for earlier work.)
For example, in decimal number-name sys-
tems, it is normal for small major powers of
ten to precede large major powers when these
are in a multiplicative relation. Thus in En-
glish we have two hundred million, but not two
million hundred, though these would in prin-
ciple evaluate to the same integer.

Based on previous work such as (Hurford,
1975) one can write a covering grammar that
allows reasonable combinations of basic num-
ber name terms, but disallows sequences that
are probably ill-formed. The grammar should
have the property that it would admit two
hundred million as an expression of 2×108,
but if the word sequence two million hun-
dred were found that would not be treated
as a number name. The grammar is based
on the approach to number names described
in (Sproat, 1997). In that approach, number
names were modeled as the composition of two
basic FSTs. The first is a factorization FST
F , which maps from digit sequences (up to
some bounded length) to sums of products of
powers of ten; the second is a lexicon FST L,
which maps from sums of products of powers
of ten to number words. The map between a
digit sequence and a number name can then be
modeled as F ◦ L∗. Thus given the following
fragment of an English lexicon

2 two
2×101 twenty
102 hundred

the factorization of 222 as 2×102 2×101 2
combined with the lexicon would yield two
hundred twenty two. In practice we generally



два десять двум десяти
два десяти двум десятью
два десятью двумя десять
две десять двумя десяти
две десяти двумя десятью
две десятью двум десять
двух десять двадцать
двух десяти двадцати
двух десятью двадцатью

Table 3: Initial renditions of 20.

also need a few cleanup rules, implemented as
additional transducers, to handle things like
use of and, or respelling of numbers in cer-
tain combinations. For larger numbers, the
factorization will depend upon which powers
of the base exist as basic terms in the target
language. In most Western languages there is
no word for 104: we say ten thousand. So we
want to factor 10,000 as 1×101×103. Chinese,
along with other East Asian languages, on the
other hand does have a word for 104, and so for
Chinese we want to factor 10,000 as 1×104.
Chinese lacks a single word for 105, so that
100,000 would be represented as 1×101×104.
South Asian (Indian) languages, however, do
have a word (lakh), so that for those languages
100,000 would be 1×105.

For the present experiment, we assume we
do not know which type of grammar Russian
has, and so we use the lexicon that we cre-
ated at the outset in combination with the
union of the FSTs representing Western, East
Asian, and South Asian factorization gram-
mars. Our grammar also makes no assump-
tions about blocking as described above, so
that we do not assume that two ten will be
blocked by the existence of twenty. This gram-
mar naturally overgenerates, but the grammar
will be constrained on the number-name side
by the word sequences that are actually ob-
served on the web. For 20, the grammar will
allow any of the examples in Table 3. Of these
only the last three underlined renditions are
correct, the others being illicit combinations
of two plus ten, which either do not occur or
are in any case rare.

3.4 The resulting dataset

The result of filtering the web data with the
grammar described in the previous section is
a list of nearly 26 million number names in
context.

3.5 Training and testing models.

We evaluated both generative (n-gram) lan-
guage models as well as discriminative mod-
els — perceptron and decision lists — on the
problem of constructing well-formed number
names in context. We describe each of these
in turn.

3.5.1 N-gram language model

We selected from our web data 7.5 million ex-
amples of Russian number names in context,
comprising 60 million words. From these data
we constructed a trigram language model us-
ing Kneser-Ney smoothing.

There were two sets of test data. One, which
we term token balanced, the other type bal-
anced. The token balanced set consists of 1,000
examples randomly selected from a held-out
portion of the web corpus. The distribution
of number names is therefore fairly represen-
tative with the distribution of number names
one finds in Russian text on the web. (See Sec-
tion 5.) For the type balanced set we select ex-
actly one instance of each number name type
so that we have a good sample of the different
types of number names found, irrespective of
their frequency: this resulted in a test set with
826 examples.

In both cases, the test set was processed by
replacing the number names with their digit
representation, and then using the number-
name expansion FST described earlier to map
back to all possible expansions of the number
name in question. As we saw with the example
of 20 above, this will result in legal (though
not necessarily contextually-appropriate) ex-
pansions, as well as illegal expansions. Thus
for each test phrase, we have a lattice of pos-
sible expansions of the number in that phrase.
The language model is then intersected with
the lattice, and the lowest cost path selected.
The number of pre-intersection candidates in
the lattice of course varies greatly depending
upon the length of the number. For 1, 14
candidates are produced; for 235,038, for in-
stance, 405,000 candidates are produced. The
technique we have just described is similar in
spirit to work on generation that uses statisti-
cal language modeling — e.g. (Langkilde and
Knight, 1998), though the problem domain
presented here is, as far as we know, novel.



3.5.2 Perceptrons and Decision Lists
In order to compare the n-gram language
model’s performance with other possible
methods, we selected a subset of the test data
that had number names consisting of single
words. Here the problem is merely to se-
lect the contextually appropriate word, with-
out the additional problem of modeling well-
formedness within the number name. The rea-
son for picking single-word number names was
that it is easier to model this as a classification
problem: most single-word numbers occur fre-
quently enough that one can expect to have
seen most or all possible forms of the word. In
any event, if the discriminative methods work
well on the single-word number names, there
will be a case for extending the methods to
handle all number names, including developing
methods for determining the correct internal
form of long complex number-names. There
were a total of 7.36 million training examples,
though there were a wide range of counts from
as low as 23 examples (for 80 ) to as high as
3.3 million examples (for 1 ).

We used two techniques. The first was a
perceptron, trained using the SNoW machine
learning package (Carlson et al., 1999), which
provides for multi-class classification. For the
perceptron learning we set α (the learning
rate) to 0.1, the threshold θ was set to 4.0 and
the initial feature weight was 0.2. α affects the
speed of update of features active in positive
(Pt) and negative (Nt) examples:

∀i ∈ Pt, wt,i ← wt,i + αtsi

∀i ∈ Nt, wt,i ← wt,i − αtsi

The threshold, θ, is a parameter of the sigmoid
function:

σ(θ, Ω) = 1
1+eθ−Ω

For each number name, the contextual fea-
tures were as follows:

• The word to the immediate left/right of
the number (L1, R1)

• Each other word in the left/right context,
tagged as being in the left/right context

• The bigram to the immediate left, span-
ning, and right of the number

• The two-character suffix of the word to
the left, and the word to the right of the

number; these features are intended as
crude morphological information

Naturally one could conceive of many other
features that could be added, but note that
with the lexical features, this already consti-
tutes hundreds or thousands of features for any
particular training set, and that this is a super-
set of the features available to the trigram lan-
guage model: the bigram features listed above
are exactly the features that the trigram lan-
guage model would use to disambiguate these
cases. Also, note that the vast majority of the
7.5 million number names used to train the tri-
gram LM are single word number names: 7.36
million, as we noted above. The trigram LM
could only have had a slight advantage from
seeing extra data.

We built disambiguation models for each of
the single-word number names (Table 6). The
training data were all examples for each of
these numbers found in the 7.5 million number
name set described above, with the possible
expansions of each of these numbers being the
classes to be predicted by the perceptron.

In addition, we also trained a decision list
(Yarowsky, 1996), using the same features as
for the perceptron. For each feature j, we com-
pute P(Ci|Fj), the probability of the ith class
given that feature. Assuming class k is the
most probable class with Fj , we compute

Abs[Log(P (Ck|Fj)
P (C

k
|Fj)

]

(where k is the complement of k) and then sort
the entire list of features by this log likelihood
value. The features at the beginning of the list
are the ones that are most discriminative. Fol-
lowing Yarowsky, in test mode the class pre-
diction for the first feature that matches is the
one that is picked.

The test data for these experiments were
as many as 1,000 instances for each number,
though several had fewer instances (see Ta-
ble 6). For comparison, the trigram language
model was also tested on these examples.

4 Results

4.1 Trigram language model

Tables 4 and 5 present the results for the type-
balanced and token-balanced tests using the
trigram language model. Each table lists the



Total forms: 826
Total words: 1937
Total multiword numbernames: 680
Total long multiword numbernames: 49
Form error rate: 0.23
Word error rate: 0.14
Form accuracy: 0.77
Imposs. form err.: 0.01
Imposs. form err., multiword: 0.02
Imposs. form err., long multiword: 0.08

Table 4: Type balanced test

Total forms: 1000
Total words: 1021
Total multiword numbernames: 16
Total long multiword numbernames: 1
Form error rate: 0.12
Word error rate: 0.12
Form accuracy: 0.88
Imposs. form err.: 0.00
Imposs. form err., multiword: 0.00
Imposs. form err., long multiword: 0.00

Table 5: Token balanced test

total forms (in context) tested, the total num-
ber of words in the tested number names, the
number of multiword number names, the num-
ber of long multiword number names (five or
more words long), the form error rate (i.e., a
number name is wrong if any word in it is
wrong), the word error rate and the form ac-
curacy (one minus the error rate). The final
three rows represent errors that involve expan-
sions that are impossible in any context — in
other words, number names that are internally
ill-formed. Examples would include case or
gender mismatches within the number name.
These are broken down into all cases of such
errors, cases that involve multi-word number
names, and cases that involve long multiword
numbernames. Note that the impossible form
rates are actually an upper bound: a form
was determined to be impossible if this par-
ticular expansion for the number in question
was never found among the data collected from
the web: this does not rule out the possibil-
ity that the combination is in fact legal, just
never observed. Clearly error rates are higher
in the type-balanced than the token-balanced
test, as one would expect: the type-balanced
text contains a higher proportion of rarer and
more complex number names than the token
balanced test. Furthermore the error rates are
still fairly high, even in the token balanced

test, which has an overall error rate of 0.12.
But the point to notice is that the impossi-
ble form rates are quite low, only as high as
0.08 in the type-balanced test. This is signifi-
cant, since what it means is that nearly all the
errors relate to the problem of picking the ap-
propriate number name expansion for the con-
text, rather than the internal well-formedness
of complex number names. And this suggests
in turn that even a perfect grammar of num-
ber names, would only improve performance
slightly: most of the problem of Russian num-
ber names is determining which form to use in
the given context.

4.2 Comparison of all methods

The performance of the perceptron, decision
list, and the trigram language model on the
single-word number names is shown in Table 6.
The lefthand column gives the digit sequence
expanded into the number name, and the re-
maining columns list accuracy for each of the
methods. Interestingly, the trigram language
model generally outperforms either of the dis-
criminative methods, which is perhaps surpris-
ing since the discriminative methods in princi-
ple had access to a wider selection of features
than the trigram language model. Some of the
cases where at least one of the discriminative
methods seemed to outperform the trigram
language model were in the teens, but here
the difference is an artifact. Recall that the
number grammar allowed illegal expansions
such as десять четыре ten four for 14 (the
correct form being четырнадцать). The tri-
gram language model was required to consider
these illegal expansions too, and occasionally
scored these higher than the correct expan-
sion. In contrast, the discriminative methods,
since they were trained only on data that in-
volved single-word expansions, never had an
option to expand 14 in this way, and so were
saved from making this error. Again, it is per-
haps surprising that the discriminative meth-
ods did not in general outperform the trigram
language model. It is of course possible that
with different parameter settings or a differ-
ent set of features than the ones provided the
perceptron, for instance, could perform better
than the results shown here. But as they stand
the results do not suggest that there is likely to
be a big gain from using these discriminative



Number # Test examples Perceptron Decision List Trigram LM
1 1000 0.79 0.68 0.83
2 1000 0.94 0.86 0.95
3 1000 0.96 0.90 0.97
4 1000 0.95 0.90 0.98
5 1000 0.92 0.89 0.96
6 1000 0.90 0.85 0.94
7 1000 0.87 0.80 0.92
8 1000 0.90 0.85 0.92
9 1000 0.90 0.87 0.94

10 1000 0.92 0.88 0.95
11 289 0.85 0.81 0.93
12 428 1.00 0.97 0.99
13 165 0.97 0.96 0.96
14 119 0.99 0.98 0.97
15 402 1.00 0.99 0.98
16 107 0.97 0.95 0.96
17 115 0.98 0.97 0.97
18 96 1.00 0.98 0.97
19 43 1.00 1.00 0.93
20 1000 0.93 0.91 0.95
30 746 0.90 0.87 0.94
40 796 0.90 0.85 0.92
50 184 0.97 0.97 0.94
60 67 1.00 1.00 0.99
70 57 0.98 0.98 0.98
80 1 1.00 1.00 1.00
90 114 0.89 0.87 0.89

100 1000 0.94 0.90 0.96
200 353 0.90 0.87 0.92
300 271 0.91 0.86 0.93
400 68 0.96 0.91 0.97
500 164 0.80 0.76 0.91
600 56 0.94 0.89 0.98
700 30 1.00 0.97 0.90
800 25 0.92 0.80 0.88
900 24 0.96 0.96 0.96

1000 1000 0.66 0.76 0.79
1000000 1000 0.66 0.63 0.71

1000000000 1000 0.59 0.62 0.67
1000000000000 10 0.60 0.50 0.50

Table 6: Comparison of methods. If a single method is a clear winner, this is marked in bold.

models for this particular task.

5 Coverage issues

The data we have worked with consists of num-
ber names that are written out as words, where
the task was to reconstruct those words from
a digit representation of the same numbers.
But do people tend to write the same kinds of
numbers as words as they write with digits?
Is the sample we have considered a represen-
tative sample of what actually would need to
be expanded into words, and therefore is the
performance we see here likely to be represen-
tative? The answer seems to be, reasonably so,
with some qualifications. Figure 1, left panel,
shows the distribution of numbers in our sam-
ple. On the horizontal axis is the numerical
value of the number name, on the vertical axis

its count, plotted on a log-log scale. Some
patterns immediately become apparent. The
highest counts in any region are for the powers
of ten that are represented as a single word in
Russian, in particular 102, 103, 106, 109, 1012.
A recurring pattern with these powers is that
the base power (1×106, for example) is roughly
two orders of magnitude more frequent than
the next multiplier (e.g. 2×106). 102 is dif-
ferent in this regard, but then 2×102 and so
forth are written as single words in Russian.
Turning to the right panel in Figure 1, we see
the distribution of the same number values, if
they occur written as digits: note that such
data are inherently noisy since especially for
longer strings of digits, we cannot be sure that
the digit was intended to be read as a number
name (as opposed to as a string of individual



Figure 1: Distribution of Russian number names (left panel) and comparable digit strings (right panel).

numbers, as in the normal reading of telephone
numbers in American English). Nevertheless,
the distribution is broadly similar to the dis-
tribution in Figure 1. The main differences
are as follows. First, the plot is less scattered.
In numbers written as words, there is likely a
resistance against writing long numbers that
would result in lots of words, so that some-
thing like 1,234,322 is relatively unlikely to
be written out, compared to 1,000,000, which
can be written as a single word. If the number
is written as a digit, it makes no difference in
terms of length which digits are used. Presum-
ably as a result of this, numbers like 2×106 are
less frequent than 1×106 by a smaller amount.
Second, there is a disproportionate number of
instances of numbers around 2,000, which of
course are years.

So these data suggest that while there are
differences in the distributions of numbers
written as words versus as digit sequences, the
distributions are not wildly different. Thus the
results reported here are reasonably represen-
tative of what we would find in applying the
models to cases originally written with digits.

6 Future work

Number names are complicated, and in no lan-
guage is this more true than in Russian. We
have shown that using a few linguistically mo-
tivated constraints, combined with standard
language modeling techniques, we can infer a
system that does quite well at the job of ex-
panding from digit strings to number names.

There is still more work to be done even

on Russian: we would like to improve perfor-
mance over what we see here, so more sophis-
ticated features – but ones that require mini-
mal linguistic knowledge beforehand – should
be investigated. Clearly other discriminative
methods beyond the ones tried here should
also be investigated; some plausible possibil-
ities would be averaged perceptron (Collins,
2002) or logistic regression (Hastie et al.,
2009). Furthermore, there are constructions
that the current data does not cover. One case
discussed in (Sproat, 1997) is the expansion of
numbers before words like процент percent :
when modifying another noun (7 percent so-
lution) the word for percent in Russian must
take an adjectival form, agreeing with the fol-
lowing noun in case, number and gender. The
number that occurs before that must itself be
in a genitive form.

The linguistic constraints that we have in-
corporated into the finite-state grammar are
not as general as they would need to be to
cover number name constructions in other lan-
guages. For example, the vigesimal system
of traditional Welsh number names presents
a real challenge. In the traditional system,
99 is expressed as pedwar ar bymtheg a phed-
war ugain, literally four on fifteen and four
twenties. To capture such cases — but not
let in cases that do not occur in number name
systems — will require further tuning of the
number-name grammar.



References

Hugo Brandt Corstius, editor. 1968. Grammars
for Number Names. Number 7 in Foundations
of Language, Supplementary Series. D. Reidel,
Dordrecht.

Andrew J. Carlson, Chad M. Cumby, Jeff L. Rosen,
Dan Roth, and Nicholas D. Rizollo. 1999.
SNoW user guide. Technical report.

Michael Collins. 2002. Discriminative training
methods for hidden markov models: Theory
and experiments with perceptron algorithms. In
EMNLP.

Trevor Hastie, Robert Tibshirani, and Jerome
Friedman. 2009. Elements of Statistical Learn-
ing. Springer, 2nd edition.

James Hurford. 1975. The Linguistic Theory of
Numerals. Cambridge University Press, Cam-
bridge.

Irene Langkilde and Kevin Knight. 1998. Gener-
ation that exploits corpus knowledge. In COL-
ING/ACL.

Craig Olinsky and Alan Black. 2000. Non-
standard word and homograph resolution for
Asian language text analysis. In ICSLP-2000,
Beijing, China.

Richard Sproat, Alan Black, Stanley Chen,
Shankar Kumar, Mari Ostendorf, and Christo-
pher Richards. 2001. Normalization of non-
standard words. Computer Speech and Lan-
guage, 15(3):287–333.

Richard Sproat, editor. 1997. Multilingual Text
to Speech Synthesis: The Bell Labs Approach.
Kluwer Academic Publishers, Boston, MA.

Terence Wade. 1992. A Comprehensive Russian
Grammar. Blackwell, Oxford.

David Yarowsky. 1996. Three Machine Learn-
ing Algorithms for Lexical Ambiguity Resolu-
tion. Ph.D. thesis, University of Pennsylvania,
Philadelphia.


